Hi Friends,
If you like this article, then please press your rating as +1 appearing at the footer of this page.
Thanks and regards.
Kunwar Rajendra
In previous posts, we have discussed in detail the design calculations associated with System design, Material balance and Thermal energy balance for setting up Refractory grade alumina production unit. For small capacity plant, sophisticated fully mechanized alumina cooling facilities may not be cost effective, thus installation of semi-mechanized equipment like Air cooler and Water cooler are considered for the purpose.
In present post, we will broadly discuss the methodology adopted for sizing of air cooler and water cooler including the calculations for working out the rating of their drive motors required for their successful operation. Here, production rate of 1.00 tph Refractory grade alumina (RGA) has been considered in the sample calculations for sizing the Air cooler and Water cooler used as Primary cooler and Secondary cooler for lowering down the temperature of alumina to desired level.
Sizing of Air Cooler:-
In first step, hot calcined alumina coming out from Rotary Kiln at around 1400oC is cooled with air in Air cooler. The generated hot air is passed in counter-current direction of alumina flow through cooler. Let the temperature of alumina drops to about 300oCand temperature of air rises from 30oC to 95oC. The hot air generated is fed to the Kiln for combustion of HFO.
Heat given by alumina = 1000*0.27*(1400-300) = 297000 k.cals/hr.
Heat lost by radiation = 25% of total heat = 0.25*297000 = 74250 k.cals/hr.
If w kg of air is passing through the Air cooler for absorbing heat,
Then heat taken by air = w*0.24*(95-30) = w*15.6 k.cals/hr.
Since Heat In = Heat Out.
Thus w*15.6 + 74250 = 297000.
Therefore, w = 14279 kg/hr.
Hence, air flow through Air cooler = 14279 kg/hr.
For design of Air cooler, mass velocity of air through Air cooler is taken as 45,00 kg/hr.m2 .
Thus, the cross sectional area of Air cooler = 14279 / 4500 m2 = 3.17 m2.
∴ (π/4)*D2 = 3.17
∴ D = 2.0 meters.
For Air coolers, L/D =4; therefore, L = 8.0 meters.
Drive motor rating for Air cooler = 4.D2 = 4* (2)2 = 16.0 kW.
Sizing of Water Cooler:-
Calcined alumina coming out from Air cooler is further cooled in Water cooler. Here, cooling water is sprayed over rotating shell, but the contact of water with alumina is completely avoided. In this case, rise in temperature of water is less but desired cooling of product alumina is easily achieved. It is assumed that final temperature of product alumina is controlled at 90 deg.C and temperature of water rises from 30 to 40 deg.C.
Hence heat given by alumina = 1000*0.27*(300-90) = 56700 k.cals/hr.
Heat taken by water = w*1.0*(40-30) = 10*w k.cal/hr.
Since heat loss = heat gain,
Thus 10*w = 56700
Therefore, w = 5.67 m3/hr.
Thus water flow to Water cooler ~ 6 m3/hr.
Overall heat transfer co-efficient for water cooler = 50 k.cals/hr.m2.deg.C.
So, 56700 = 50*A*(40-30).
Therefore, A = 113.4 sq.m.
For Water cooler, L/D = 7.
Hence, π*D*L = 113.4,
or. π*D*7D = 113.4
Thus, D =2.27 m and L = 15.9 m.
Drive motor rating for Water Cooler = 4.(D)2 = 4*(2.27)2 =20.6 kW.
Trust, design calculations for sizing of Air cooler and Water cooler required for Alumina refinery have been described systematically. Please put your views / suggestions / remarks / comments, in case you have something better to share with friends of Alumina-aluminium fraternity.
If you like this article, then please press your rating as +1 appearing at the footer of this page.
Thanks and regards.
No comments:
Post a Comment